/
LAMMPS 

LAMMPS 

Description

LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for solid-state materials (metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.

More information

- Homepage: https://www.lammps.org

Available Versions of LAMMPS

Version

Module

Available on

Version

Module

Available on

29Sep2021-foss-2021a-kokkos

chem/LAMMPS/29Sep2021-foss-2021a-kokkos

Noctua 2

29Aug2024-foss-2023b-mbx-kokkos

chem/LAMMPS/29Aug2024-foss-2023b-mbx-kokkos

Noctua 2

29Aug2024-foss-2023b-kokkos

chem/LAMMPS/29Aug2024-foss-2023b-kokkos

Noctua 2

27Jun2024-foss-2023b-kokkos-CUDA-12.5.0

chem/LAMMPS/27Jun2024-foss-2023b-kokkos-CUDA-12.5.0

Noctua 2

23Jun2022-foss-2022a-kokkos-CUDA-11.7.0

chem/LAMMPS/23Jun2022-foss-2022a-kokkos-CUDA-11.7.0

Noctua 1, Noctua 2

23Jun2022-foss-2022a-kokkos

chem/LAMMPS/23Jun2022-foss-2022a-kokkos

Noctua 1, Noctua 2

23Jun2022-foss-2022a-gpu-CUDA-11.7.0

chem/LAMMPS/23Jun2022-foss-2022a-gpu-CUDA-11.7.0

Noctua 1, Noctua 2

23Jun2022-foss-2021b-kokkos-CUDA-11.4.1

chem/LAMMPS/23Jun2022-foss-2021b-kokkos-CUDA-11.4.1

Noctua 1, Noctua 2

23Jun2022-foss-2021b-kokkos

chem/LAMMPS/23Jun2022-foss-2021b-kokkos

Noctua 1, Noctua 2

23Jun2022-foss-2021a-kokkos

chem/LAMMPS/23Jun2022-foss-2021a-kokkos

Noctua 2

7Aug2019-foss-2022a-openmp

chem/LAMMPS/7Aug2019-foss-2022a-openmp

Noctua 2

7Aug2019-foss-2022a-kokkos

chem/LAMMPS/7Aug2019-foss-2022a-kokkos

Noctua 2

7Aug2019-foss-2019b-Python-3.7.4-kokkos

chem/LAMMPS/7Aug2019-foss-2019b-Python-3.7.4-kokkos

Noctua 2

3Mar2020-foss-2020a-Python-3.8.2-kokkos

chem/LAMMPS/3Mar2020-foss-2020a-Python-3.8.2-kokkos

Noctua 2

2Aug2023_update3-foss-2023b-ml_hdnnp-kokkos

chem/LAMMPS/2Aug2023_update3-foss-2023b-ml_hdnnp-kokkos

Noctua 2

2Aug2023_update3-foss-2023b-kokkos

chem/LAMMPS/2Aug2023_update3-foss-2023b-kokkos

Noctua 2

This table is generated automatically. If you need other versions please click pc2-support@uni-paderborn.de.

Usage Hints for LAMMPS

If you need support in using this software or example job scipts please contact pc2-support@uni-paderborn.de.

 

Noctua 2

General Usage

For using LAMMPS on Noctua 2 you can use the following input file as a template. It performs at 1,074 ns/day for 2000 steps of the Rhodopsion benchmark with 2.048.000 atoms. It is slightly faster than other published results with 64-core AMD Milan CPUs (see https://dl.acm.org/doi/pdf/10.1145/3437359.3465596).

#!/bin/bash #SBATCH -N 1 #SBATCH --exclusive #SBATCH --ntasks-per-node=128 #SBATCH -t 30:00 module reset # Note: please select one of the installed LAMMPS modules that is suitable for your simulation. module load chem/LAMMPS/3Mar2020-foss-2020a-Python-3.8.2-kokkos export OMP_NUM_THREADS=1 export OPENBLAS_NUM_THREADS=1 srun lmp -in rhodo.inp

Use GPU Acceleration via the KOKKOS Package in LAMMPS

To enable GPU acceleration through the KOKKOS package, follow these steps:

  1. Load the appropriate module:

Ensure the LAMMPS module with -kokkos-CUDA in its name is loaded. For example, the 27Jun2024-foss-2023b-kokkos-CUDA-12.5.0 module can be loaded in your Slurm jobscript for GPU-accelerated calculation in LAMMPS.

  1. Run lmp with suitable options:

Include the following options in the lmp command:

  • -k on g ${SLURM_GPUS_ON_NODE} activates GPU usage via KOKKOS and the number of GPUs is automatically given as the Slurm job is allocated.

  • -sf kk appends the “/kk” suffix to KOKKOS-supported LAMMPS styles.

  • -pk kokkos adjusts default KOKKOS settings as needed.

Note: the number of GPUs must match the number of MPI tasks specified in the Slurm jobscript.

  1. Example Slurm jobscript (single GPU):

Below is a sample Slurm jobscript for running LAMMPS with one GPU via KOKKOS.

#!/usr/bin/env bash #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=16 #SBATCH --time=00:20:00 #SBATCH --error=sl_%j.errFile #SBATCH --output=sl_%j.outFile #SBATCH --partition=gpu #SBATCH --gres=gpu:a100:1 # module reset module load chem/LAMMPS/27Jun2024-foss-2023b-kokkos-CUDA-12.5.0 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK export OPENBLAS_NUM_THREADS=$SLURM_CPUS_PER_TASK export OMP_PROC_BIND=spread export OMP_PLACES=cores # # Note: # - 1 MPI task on 1 compute node is specified in this jobscript # - thus, the number of GPU must be 1, matching 1 MPI task # srun lmp -k on g ${SLURM_GPUS_ON_NODE} -sf kk -pk kokkos -in YOUR_LAMMPS_JOB.inp

Use Special Packages in LAMMPS

ML-HDNNP Package

The high-dimensional neural network potential (HDNNP) method (Behler and Parrinello 2007) can provide machine learning potentials for MD simulations. If your calculation uses HDNNP in LAMMPS, please load the module chem/LAMMPS/2Aug2023_update3-foss-2023b-ml_hdnnp-kokkos in your Slurm jobscript.



If you experience problems, need support for other versions or performance tuning to a certain case, please let us know at pc2-support@uni-paderborn.de.

Related content